详细内容

字号:   

BOPET薄膜的印刷、镀铝性能及其影响因素

浏览次数: 日期:2017年8月12日 11:13

一、 前言

  近年来,双向拉伸聚酯(BOPET)薄膜行业以惊人的速度在发展,其应用范围也在不断地扩大,特别是在印刷、包装领域,由于其具有较高的抗拉强度、优越的空气阻隔性、较好的尺寸稳定性和耐化学性,因此大有压倒BOPP薄膜之势。同其他非极性的塑料薄膜相比,BOPET薄膜具有一定的极性,其镀铝和印刷性尚可。但为了更好地提高其镀铝和印刷时的附着牢度,仍需对其进行表面处理,而且有时即使经过一定的表面处理,也会由于其他一些原因,如油污、灰尘、低分子物等污染形成的薄弱界面层而造成镀铝或印刷后的脱铝、脱墨现象,影响其使用情况。因此有必要对BOPET薄膜的镀铝或印刷后的脱铝、脱墨现象,影响其使用情况。因此有必要对BOPET薄膜的镀铝及印刷性能及其影响因素作一深入的探讨和研究,从而进一步扩大BOPET薄膜在印刷包装领域的应用。

  简单来说,薄膜的印刷或镀铝,就是油墨或镀铝层在薄膜表面的附着,因此要提高薄膜的印刷及镀铝效果,就要求增强油墨或镀铝层与薄膜表面之间的附着牢度。下面我们就分别从附着机理、BOPET薄膜的表面结构性能及其影响因素等几个方面来阐述如何提高油墨或镀铝层与薄膜之间的附着力。

二、 附着机理

1分子间力与键能
  分子间力与键能对油墨或镀铝层与塑料薄膜间的附着力有着重要的影响,是影响它们之间附着牢度的主要因素。广义的分子间力包括范德华力、化学键与氢键。

  范德华力包括取向力、诱导力和色散力。其中取向力是极性分子永久偶极矩由于静电相互作用而产生的吸引力,其作用能为1.2×104~2.1×104J/mol。诱导力为极性分子对其他极性分子和非极性分子发生影响而产生的力,其作用能为0.6×1041.2×104J/mol。色散力可以看作是分子的瞬时偶极矩相互作用产生的结果,其存在于非极性分子之间、极性分子之间以及极性分子与非极性分子之间。色散力较弱,小分子的色散作用能一般为0.8×1038.4×103J/mol[1]。一般的塑料薄膜表面都是非极性的,即使具有一定的极性,如BOPETBOPA,其极性也相对较低。而油墨中的树脂成分具有一定的极性,镀铝层也是具有很高表面能的极性物质,因此塑料薄膜特别是非极性的塑料薄膜与油墨或铝层之间主要存在的是比较弱的色散力,缺乏作用能较强的取向力,故它们间的附着牢度是比较低的。

  化学键包括共价键、配位键等,其键能较强,为4.2×105~8.4×105J/mol[1]。大多数的塑料薄膜都具有良好的化学稳定性,表面缺乏活性基团,因此通常难与油墨及铝层发生化学作用,生成化学键,从而影响他们之间的附着力。

  氢键是分子中的官能团AH和不同分子中的原子B所形成的弱化学键,其键能为2.1×1044.2×104J/mol[1],比化学键的能量要小得多,大于范德华力,但数量级相同。

2表面张力与润湿性
  表面即物体单独存在时的外部区域,处于表面的物质分子的朝外方向,由于没有受到同种分子的吸引作用,其受力情况与非表面区(相内)分子处于各向受力平衡的情况不同。物质表面区的分子由于受力不平衡产生一种向内收缩的力或热能,即表面张力或表面能[2]

  一般情况下,地球上的物体均处在空气(包括某些物质的蒸气)的环境中,液体的表面张力通常是液体(L)在蒸气(空气)(V)环境中测定。为此,测定值实际上是液体与气体间的界面张力γLV,但γLV值十分接近在真空中测定的液体表面的张力γLV

  对于印刷来说,油墨在薄膜基材上充分地铺展,即完全润湿是形成良好附着牢度的先决条件,因为只有当油墨和薄膜表面充分靠近,分子间距离达到10-3μm以下时,分子之间才能产生相互的吸引作用,并使分子间距进一步缩短到能够处于最稳定状态的距离。

液体同固体表面接触时,有三处力处于平衡状态,如下图所示。
图中:
γS为固体表面张力,是液体在固体表面伸展的力,有扩大固体和气体界面面积的作用。
γL为液体的表面张力。
γSL是促使固体和液体界面面积缩小的力,称为液体和固体间的界面张力。
θ为接触角。
当三种力达到平衡时
cosθ=(γSγSL)/γL
θ趋近于时,cosθ趋近于1,此时,液体对固体的润湿性就达到了最大值。对于油墨和薄膜来说,在这种情况下就实现了密切接触。

  从上式可以看出,通过增大薄膜的表面张力、减小油墨的表面张力或者减小它们之间的界面张力都可以提高润湿性和附着力,这就是为什么我们要在薄膜印刷和镀铝前对其进行表面处理以提高其表面张力的缘故。

3扩散作用

  对于印刷,当油墨中的树脂及溶剂的溶解度参数与薄膜的溶解度参数相近时,则二者之间易于相溶,当它们相互紧密接触时,在分子热运动(微布朗运动)的影响下,长链分子及其链段将发生扩散运动,使聚合物之间形成相互交织的界面层,从而提高了两者间的附着力。

4机械作用

  光滑的塑料薄膜表面与印墨和镀铝层的附着牢度并不好,这是因为它们之间的接触面积相对较小,而且缺少必要的机械锚固作用。当对薄膜表面进行处理而使之具有适当的粗糙度后,一方面增大了油墨及铝层与薄膜表面的有效粘接面积;另一方面,油墨以及真空镀铝时凝结的铝粉可以进入粗糙薄膜表面的凹陷和微孔中,这样印墨树脂及铝粉就被机械地镶嵌在孔隙中,形成许多微小的机械联结点,将印墨及铝层牢牢地“锚固在薄膜表面上[3]。但是,表面太粗糙对附着也不有利,因为当表面过于粗糙时,印墨的润湿性变差,印墨和铝粉不能完全填满微孔,造成粘附缺陷,反而使附着力降低。

 

 

 

 

三、 BOPET薄膜的表面结构性能及其对薄膜印刷、 镀铝性能的影响
  从上述的附着机理分析,可以看出,BOPET薄膜的表面结构与性能直接影响着其后序加工如镀铝、印刷及复合的性能和效果,以下就分别从BOPET薄膜的表面极性与张力、表面粗糙度、摩擦系数、薄膜界面层等几个方面来说明其表面的性能特征及对其印刷、镀铝性能的影响。
1表面极性与表面张力
  材料本身的分子结构决定了材料极性的大小,而材料的表面张力又与其表面极性有关,极性越大,表面张力也越大。PET大分子链中含有极性基团酯基,因此,BOPET薄膜表面具有一定的极性,其表面张力较一般的非极性塑料薄膜如BOPP大,未经表面处理的BOPET薄膜的表面张力可达到4042达因/cm[4]。当薄膜用于印刷时,为了使油墨能够完全浸润(润湿)薄膜表面,要求薄膜的表面张力要等于或大于油墨的表面张力,故在印刷时,要求薄膜的表面张力要至少大于38达因/cm[5],对于真空镀铝,由于铝表面具有很高的表面能,表面极性和表面张力很大,且其表面常带有羟基,而BOPET薄膜表面因酯基的存在,也具有一定的极性,因此薄膜与铝层间一方面靠范德华力结合;另一方面,在BOPET薄膜型流体场中,PET呈平面层状聚集态,其苯环平躺在膜面方向,苯环的存在形成了冗电子体系,与铝原子外层的电子云叠加,形成配价键[6]
  实践证明,在一般情况下,未处理BOPET薄膜已经能满足印刷、镀铝的要求。但为了进一步增加油墨及铝层与薄膜间的附着牢度,通常仍要对BOPET薄膜进行表面处理。薄膜表面处理方法有电晕处理、等离子体处理、化学处理、光化学处理、火焰处理、涂层处理等。其中电晕处理是应用最普遍的一种。电晕处理的作用表现为:①通过电极在电极和电晕处理辊之间放电,使空气电离,形成臭氧和氧化氮。同时高能的电子和离子攻击薄膜表面,使其链状分子断裂,产生自由基,并同空气的电晕产物发生氧化交联等反应,生成羟基、羰基等极性基团,提高了薄膜的表面张力及极性。高能电子和离子注入薄膜,在塑料薄膜表面产生微凹的密集孔穴,使薄膜表面粗化,增大表面活性。薄膜表面的润湿张力与电晕处理的强度有关。而电晕处理的强度则与电极电压的高低和电极——电晕辊之间的间隙有关。电极电压高,与电晕辊之间的距离小,电晕处理效果强;与薄膜和电晕辊之间是否夹入空气有关,如果膜辊之间夹有空气将会导致薄膜背面也被处理;与电晕辊和电极表面清洁度有关,电晕辊和电极表面很脏,则会减弱电晕处理的效果。
  添加剂的加入也可能对薄膜表面的极性及表面张力产生一定的影响。BOPET薄膜中常用的添加剂为抗粘连剂,通常采用二氧化硅。二氧化硅中的硅氧键具有较强的极性,且二氧化硅粒子表面常吸附有一定的化合水和羟基,因此,二氧化硅粒子具有较高的表面能,这样裸露在薄膜表面的二氧化硅粒子有助于增加薄膜表面的极性及表面张力,有利于镀铝和印刷。有时,为了提高二氧化硅粒子与PET的相容性,促进其在PET聚合过程中的分散,要采用表面处理剂(分散剂、偶联剂等),对其进行表面处理,以降低其表面张力和极性。在此种情况下,薄膜表面分布的二氧化硅粒子会影响膜面的极性和表面张力,而且过量的表面处理剂可能会迁移到薄膜表面,导致其镀铝和印刷性能变差。但是,如果当所采用的表面处理剂其疏水端具有长链结构或反应性的官能团时,会与印刷油墨中的树脂成分发生扩散或化学作用,在这种情况下,经表面处理的添加剂的加入反而有利于提高薄膜与印墨间的附着牢度。

  另外,对薄膜表面进行涂层,以彻底改变BOPET薄膜的表面性质,也有利于其与镀铝层及油墨的附着,并且能够克服由于PET的蠕变而产生的镀铝层转移。因为在对传统的镀铝复合膜用显微镜观察时可以发现:镀铝层存在大量的纹隙和空隙,镀铝层致密度差。这是由于在真空蒸镀过程中BOPET在张力、温度的作用下产生拉伸形变,收卷后PET蠕变恢复而产生的结果。复合以后粘合剂分子会通过这些空隙渗入镀铝层和薄膜界面,严重降低两者的附着牢度,从而造成剥离时镀铝层的转移。若在BOPET薄膜表面上先涂一层丙烯酸类树脂专用涂层,再进行真空镀铝,这样丙烯酸专用涂层介于镀铝层和BOPET薄膜间起到一个缓冲层的作用,使PET在真空蒸镀收卷后蠕变产生的应力释放在该涂层,从而减小了对镀铝层的破坏,镀铝层的致密度大大提高,复合以后粘合剂分子无法通过空隙渗入镀铝层和薄膜界面。此外,专用涂层与镀铝基材BOPET、铝层的界面结合牢度好,所以与其它基材复合后剥离强度很高,镀铝层不会向任何一层转移。
2表面粗糙度
  未经处理且不含有添加剂(抗粘连剂)BOPET薄膜表面是非常光滑的。这不但不利于其收卷与分切,也不利于其后序的镀铝、印刷等加工。通过电晕处理及加入添加剂,可使表面粗化,具有一定的粗糙度,从而增大了粘附面积,并利用机械锚固作用提高薄膜与油墨及镀铝层间的附着牢度。

电晕处理使薄膜表面粗化的原理前面已述。
  添加剂对薄膜表面粗糙度的影响与添加剂的种类、形状、粒径、粒子分布、加入量等因素有关。BOPET薄膜中常采用的抗粘连剂为二氧化硅,形状为不规则的球状。二氧化硅粒子的粒径越大,加入量越多,则薄膜表面粗糙度也越大,在一定程度上有利于薄膜的印刷及镀铝。但粗糙度过大,可能会造成油墨及铝粉填不满薄膜表面的凹陷,形成空隙,进而降低两者之间的附着,导致成品的脱铝或脱墨。另外,粒子粒径的分布及在薄膜中的分散均匀性会直接影响薄膜表面粗糙度的均匀性。因此,应在聚合及加工过程中,尽量防止粒子的凝聚,并促使其在薄膜表面分散均匀,从而使整个薄膜表面的粗糙度均匀一致。若粗糙度分布过于不均,则可能会在粗糙度过大或过小的区域形成比较薄弱的附着界面,剥离时就会在这些薄弱界面发生优先脱落,从而降低了整体的附着牢度。
3摩擦系数
  在生产金属化镀铝膜时,如果薄膜摩擦系数较高会对镀铝产生阻隔作用,降低薄膜镀铝性能,因此需要控制薄膜摩擦系数较低,最好是低于035。而需要特别强调的是为了达到这个摩擦系数,绝对不能加入任何爽滑剂,一个原因是这些爽滑剂通常都是迁移性的,在迁移过程会降低薄膜的表面张力而降低了金属的附著,另一个原因是在真空镀铝过程这些爽滑剂有可能被真空吸出,造成镀铝设备产生隔层干扰了金属的附著。所以为了达到较低的摩擦系数,生产金属化镀铝膜时需要选用有机物的抗粘连剂[7]。
4薄弱界面层
  塑料薄膜表面普遍存在有薄弱界面层。薄弱界面层的形成一方面是薄膜中的低分子量物质(如抗静电剂、爽滑剂、表面处理剂等)可能析出,汇集在薄膜表面形成的一层强度低、厚度薄的界面层。另外,薄膜在生产及储存过程中,由于吸附水、灰尘、油污也易形成薄弱界面层。对于BOPET薄膜,由于一般不添加抗静电剂、爽滑剂等低分子量物质,因此其薄弱界面层主要是由于薄膜表面受水、灰尘、油污、低分子升华物等污染而形成的。其薄弱界面层的表面能一般都较低,由于其屏蔽作用,降低了薄膜的表面张力和润湿性,而使印墨及镀铝层表现出很差的粘附性,印刷时,还会出现油墨分散不好,印品出现针孔、白点等缺陷。
  在BOPET薄膜生产过程中,薄弱界面层的形成主要有以下几个方面:
(1)灰尘污染
  塑料薄膜(包括BOPET薄膜)一般都是绝缘性能较好的材料,这些薄膜在生产过程中,由于摩擦或静电场的作用,薄膜的表面将会产生大量的静电。如果薄膜工厂中的空气中含有较多灰尘时,带有静电的薄膜将会把灰尘吸附在其表面,影响薄膜的洁净度,进而影响薄膜的印刷、镀铝粘合能力。
(2)低分子物污染
  BOPET薄膜在横向拉伸定型后要进行强制冷却。强制冷却时,薄膜内升华出来的低分子物遇冷凝聚。生产时间越长,冷却循环系统中凝聚物的含量会不断增多,冷却区被污染的程度也会越来越大,低分子冷凝物沉积在薄膜表面,形成了薄弱界面层,对薄膜表面造成污染。
  BOPET薄膜在电晕处理后要通过一个冷却辊进行冷却。电晕处理时,部分未被抽走的低分子升华物、空气及薄膜的电离产物等被薄膜带到冷却辊上,并遇冷凝聚沉积在辊面,时间越长,冷却辊表面上的冷凝物越多。薄膜在通过冷却辊时,这些冷凝物就容易粘附在薄膜表面,造成污染。
(3)油污污染
  在链条、辊筒高速运转时,由于密封不好等原因而造成的漏油及油污飞溅对薄膜造成污染。

(4)电晕出水污染
  在相对湿度较高的环境下生产时,由于排风的影响,电晕处的温度相对较低,因此在电极及电晕辊外的不锈钢外罩上就容易结露,凝结的水珠(水珠中还可带有低分子物、污泥等电晕产物)滴到薄膜上,造成薄膜表面的污染,严重时出现薄膜的粘连,影响其镀铝、印刷等后序加工。
四、 结束语

  随着人民生活水平的不断提高,人们对包装产品的要求也越来越高。BOPET薄膜凭借其优越的性能,已在包装材料市场上显示出很强的竞争实力及广阔的发展前景。由于BOPET薄膜的印刷、镀铝性能直接影响着其产品的应用,因此,对BOPET薄膜的表面改性和处理,以及如何更好地减少环境对薄膜表面的污染以增加其镀铝、印刷时的附着牢固性,这对各BOPET薄膜生产厂家来说都有一个有意义的课题。

所属类别: 行业资讯

该资讯的关键词为:聚酯、PET、BOPET 


荣誉资质   |   公司新闻   |   行业新闻   |   产品展示   |   人力资源   |   在线留言
版权所有 湖南怡永丰新材料科技有限公司 ,未经允许禁止转载  湘CP备11003655号
中企动力提供网站建设   网站后台  

FAX:+0731-84657618
32187913@QQ.com